Journal: Journal of Computer Science and Engineering Research (JCSER) , Volume:1, Issue:1, Pages: 1-7 Download pdf
Authors: Aliaa H. Abbas, Wasan A. Wali
Date: 8-2024
Abstract: The increasing concentration of carbon dioxide gas in the world has led to exploring solutions and alternatives to reduce these concentrations or benefit from carbon dioxide gas and use it as an environmentally friendly fuel and in other applications. There are many ways to decompose gas into oxygen, carbon, or carbon monoxide, including chemical and thermal methods. This can also be done using plasma techniques. A review of the literature related to plasma-based carbon dioxide dissociation will be presented. It also describes some different types of plasma, in addition to explaining the results of recent scientific research in this regard. The results of recent conclusions have shown that through plasma technology, high energy efficiency can be achieved, which indicates the efficiency of plasma in its use in converting carbon dioxide gas.
Keywords: CO2 Conversion; plasma; CO2 Dismantling; Microwave (MW); Dielectric Barrier Discharge (DBD)
References:
[1] ENVIRONMENTAL IMPACTS OF HUMANITY’S CARELESSNESS PART I: EXTINCTION, CLIMATE CHANGE AND POLLUTION. (2022). In МИКРОЭЛЕМЕНТЫ В МЕДИЦИНЕ/TRACE ELEMENTS IN MEDICINE (pp. 24–34). https://doi.org/10.19112/2413-6174-2022-23-1-24-34
[2] Wali, W. A. (2020). Carbon Dioxide Conversion Control Based on Microwave Plasma Technology. Proc. Of the 2nd International Conference on Electrical, Communication and Computer Engineering (ICECCE); IEEE.https://ieeexplore.ieee.org/abstract/document/9179393/
[3] Shivanna, K. R. (2022). Climate change and its impact on biodiversity and human welfare. Proceedings of the Indian National Science Academy. Part a, Physical Sciences, 88(2), 160–171. https://doi.org/10.1007/s43538-022-00073-6
[4] Alotaibi, M. (2023b). Climate change, its impact on crop production, challenges, and possible solutions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 13020. https://doi.org/10.15835/nbha51113020
[5] Control of Solar Powered Cathodic Protection System. (2018b). Muthanna Journal of Engineering and Technology. https://doi.org/10.52113/3/eng/mjet/2018-06-02/152-159
[6] Carbon dioxide conversion to value-added products and fuels: opportunities and challenges: a critical review. (2023). International Journal of Green Energy. https://doi.org/10.1080/15435075.2023.2281330
[7] Karamian, E., & Sharifnia, S. (2016b). On the general mechanism of photocatalytic reduction of CO2. Journal of CO2 Utilization, 194–203. Retrieved from http://dx.doi.org/10.1016/j.jcou.2016.07.004
[8] Jin, S., Hao, Z., Zhang, K., Yan, Z., & Chen, J. (2021d). Carbon Dioxide Reduction Reaction. Angewandte Chemie, 2–24. Retrieved from https://doi.org/10.1002/anie.202101818
[9] Wu, X. Y., & Ghoniem, A. F. (n.d.-b). Mixed ionic-electronic conducting (MIEC) membranes for thermochemical reduction of CO2: A review. Progress in Energy and Combustion Science (Vol. 74, pp. 1–30). Retrieved from https://doi.org/10.1016/j.pecs.2019.04.003
[10] Appel, A. M., Bercaw, J. E., Bocarsly, A. A., Dobbek, H., DuBois, D. L., Dupuis, M., . . . Thauer, R. K. (2012b, November). Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation. Chem. Rev. https://doi.org/10.1021/cr300463y
[11] Adwek, G., Shen, B., Craven, M., & Wang, Y. (2021b). A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization. Renewable and Sustainable Energy Reviews (Vol. 135, p. 109702). Retrieved from https://doi.org/10.1016/j.rser.2020.109702
[12] Pillai, R. R., & Thomas, V. (2023b, January). Plasma Surface Engineering of Natural and Sustainable Polymeric Derivatives and Their Potential Applications. Polymers (Vol. 15, p. 400). Retrieved from https://doi.org/10.3390/polym15020400
[13] Akay, G. (2023b, September). Hydrogen, Ammonia and Symbiotic/Smart Fertilizer Production Using Renewable Feedstock and CO2 Utilization through Catalytic Processes and Nonthermal Plasma with Novel Catalysts and In Situ Reactive Separation: A Roadmap for Sustainable and Innovation-Based Technology. Catalysts (Vol. 13, p. 1287). Retrieved from https://doi.org/10.3390/catal13091287
[14] Alves, L. L., Becker, M. M., Van Dijk, J., Gans, T., Go, D. B., Stapelmann, K., . . . Turner, M. M. (2023). Foundations of plasma standards. Plasma Sources Science and Technology, 32, 023001 (32pp). Retrieved from https://doi.org/10.1088/1361-6595/acb810
[15] Bhatt, P., Kumar, V., Subramaniyan, V., Nagarajan, K., Sekar, M., Chinni, S. V., & Ramachawolran, G. (2023b). Plasma Modification Techniques for Natural Polymer-Based Drug Delivery Systems. Pharmaceutics (Vol. 15, p. 2066). Retrieved from https://doi.org/10.3390/pharmaceutics15082066
[16] Van Alphen, S. (2021b). Modelling plasma reactors for sustainable CO2 conversion and N2 fixation.
[17] Barkhordari, A., Karimian, S., Rodero, A., Krawczyk, D. A., Mirzaei, S. I., & Falahat, A. (2021b). Carbon Dioxide Decomposition by a Parallel-Plate Plasma Reactor: Experiments and 2-D Modelling. Applied Sciences, 11, 10047. Retrieved from https://doi.org/10.3390/app112110047
[18] Vervloessem, E. (2023d). The Role of Pulsing and Humidity in Plasma-based Nitrogen Fixation: a Combined Experimental and modeling study. Doctor of Science: Chemistry, Doctor of Engineering Physics. Universiteit Antwerpen en de Universiteit Gent. Retrieved from https://URL
[19] Donkó, Z., Schulze, J., Czarnetzki, U., Derzsi, A., Hartmann, P., Korolov, I., & Schüngel, E. (2012b). Fundamental investigations of capacitive radio frequency plasmas: simulations and experiments. Plasma Physics and Controlled Fusion, 54(12), 124003. https://doi.org/10.1088/0741-3335/54/12/124003
[20] Tang, L., Huang, H., Hao, H., & Zhao, K. (2013b). Development of plasma pyrolysis/gasification systems for energy efficient and environmentally sound waste disposal. Journal of Electrostatics, 71(5), 839–847. https://doi.org/10.1016/j.elstat.2013.06.007
[21] Mikoviny, T., Kocan, M., Matejcik, S., Mason, N. J., & Skalny, J. D. (2003b). Experimental study of negative corona discharge in pure carbon dioxide and its mixtures with oxygen. Journal of Physics D Applied Physics, 37(1), 64–73. https://doi.org/10.1088/0022-3727/37/1/011
[22] Liu, J. B., Li, X. S., Liu, J. L., & Zhu, A. M. (2019b). Insight into gliding arc (GA) plasma reduction of CO2 with H2: GA characteristics and reaction mechanism. Journal of Physics D Applied Physics, 52(28), 284001. https://doi.org/10.1088/1361-6463/ab1bb1
[23] Adamovich, I., Agarwal, S., Ahedo, E., Alves, L. L., Baalrud, S., Babaeva, N., . . . Von Woedtke, T. (2022). The 2022 Plasma Roadmap: low temperature plasma science and technology. Journal of Physics D: Applied Physics, 55, 373001. Retrieved from https://doi.org/10.1088/1361-6463/ac5e1c
[24] Carbon dioxide conversion to value-added products and fuels: opportunities and challenges: a critical review. (2023b). International Journal of Green Energy. https://doi.org/10.1080/15435075.2023.2281330
[25] Viegas, P., Vialetto, L., Wolf, A. J., Peeters, F. J. J., Groen, P. W. C., Righart, T. W. H., . . . Van De Sanden, M. C. M. (2020b, July). Insight into contraction dynamics of microwave plasmas for CO2 conversion from plasma chemistry modelling.
[26] Van De Steeg, A., Butterworth, T., Van Den Bekerom, D., Sovelas Da Silva, A., Van De Sanden, M., & Van Rooij, G. (2021c). Plasma activation of N2, CH4 and CO2: an assessment of the vibrational non-equilibrium time window. Dutch Institute for Fundamental Energy Research.
[27] Van Den Bekerom, D. C. M., Van De Steeg, A., Van De Sanden, M. C. M., & Van Rooij, G. J. (2019c). Mode resolved heating dynamics in pulsed microwave CO2 plasma from laser Raman scattering. Journal of Physics D Applied Physics, 53(5), 054002. https://doi.org/10.1088/1361-6463/ab5311
[28] Mercer, E., Van Alphen, S., Van Deursen, C., Righart, T., Bongers, W., Snyders, R., . . . Peeters, F. (2023c). Post-plasma quenching to improve conversion and energy efficiency in a CO2 microwave plasma. Fuel, 334, 126734. https://doi.org/10.1016/j.fuel.2022.126734
[29] D’Isa, F. A., Carbone, E. a. D., Hecimovic, A., & Fantz, U. (2020c). Performance analysis of a 2.45 GHz microwave plasma torch for CO2 decomposition in gas swirl configuration. Plasma Sources Science and Technology, 29(10), 105009. https://doi.org/10.1088/1361-6595/abaa84
[30] Hecimovic, A., Mayer, M., De Haart, L., Gupta, S., Kiefer, C., Navarrete, A., & Schulz, A. (2024). Benchmarking microwave-induced CO2 plasma splitting against electrochemical CO2 reduction for a comparison of promising technologies. Journal of CO2 Utilization, 83, 102825. Retrieved from https://doi.org/10.1016/j.jcou.2024.102825
[31] Uytdenhouwen, Y., Van Alphen, S., Michielsen, I., Meynen, V., Cool, P., & Bogaerts, A. (2018b). A packed-bed DBD micro plasma reactor for CO2 dissociation: Does size matter? Chemical Engineering Journal, 348, 557–568. https://doi.org/10.1016/j.cej.2018.04.210
[32] Ray, D., Saha, R., & Ch, S. (2017b). DBD Plasma Assisted CO2 Decomposition: Influence of Diluent Gases. Catalysts, 7(9), 244. https://doi.org/10.3390/catal7090244
[33] Hayakawa, Y. (2023). CO2 conversion characteristics by micro-gap DBD plasma reactor. Int. J. Plasma Environ. Sci. Technol., 17, e01007 (12pp). https://doi.org/10.34343/ijpest.2023.17.e01007
[34] Wu, X., Lang, J., Sun, Z., & Jin, F. (2021b, May). Photocatalytic conversion of carbon monoxide: from pollutant removal to fuel production. Applied Catalysis B: Environmental (Vol. 295). Retrieved from https://doi.org/10.1016/j.apcatb.2021.120312
[35] Wang, L., Nitopi, S., Wong, A. B., Snider, J. L., Nielander, A. C., Morales-Guio, C. G., . . . Jaramillo, T. F. (2019b). Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nature Catalysis, 2(8), 702–708. https://doi.org/10.1038/s41929-019-0301-z
[36] Aresta, M., & Dibenedetto, A. (2007b). Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Transactions, 2007–2975, 2975–2992. https://doi.org/10.1039/b700658f
[37] Havran, V., Duduković, M. P., & Lo, C. S. (2011b). Conversion of Methane and Carbon Dioxide to Higher Value Products. Industrial & Engineering Chemistry Research, 50(12), 7089–7100. https://doi.org/10.1021/ie2000192
[38] Wanten, B., Vertongen, R., De Meyer, R., & Bogaerts, A. (2023b). Plasma-based CO2 conversion: How to correctly analyze the performance? Journal of Energy Chemistry (Vol. 86, pp. 180–196). Retrieved from https://doi.org/10.1016/j.jechem.2023.07.005