Journal: Journal of Robotics Research (JRR), Volume:2, Issue:1, Pages: 1-13 Download pdf
Authors: Huda Al-Qurnawi, Alaa Al-Ibadi
Date: 12-2024
Abstract: Employees who perform physical labor and manual material handling duties run the risk of developing bones and muscles problems as well as lumbar discomfort. To support and disperse the load on the spine, spinal exoskeletons are now under development. This article reviews back support exoskeletons in great detail and with the most recent information. It covers the following topics: tasks (lifting, bending, and squatting), weight, power transfer methods, construction (rigid/soft), actuator and motor types, motor coordination, and other crucial aspects. An assessment of exoskeletons for back support capacity to lessen the spine's physical strain is also included in this article. To improve communication and understanding between ergonomics practitioners, developers, customers, and manufacturing workers, the functional and structural aspects will be reviewed. To sum up exoskeletons for the back have the possibility of greatly lower the risk factors connected to musculoskeletal injuries at work. However, the widespread use of exoskeletons in industry is restricted by a number of technical issues and the absence of recognized safety requirements.
Keywords: Backbone; Exoskeleton; Support; Rehabilitation; Soft robot.
References:
[1] H. K. Kim, M. Hussain, J. Park, J. Lee, and J. W. Lee, “Analysis of Active Back-Support Exoskeleton During Manual Load-Lifting Tasks,” J. Med. Biol. Eng., vol. 41, no. 5, pp. 704–714, Oct. 2021, doi: 10.1007/s40846-021-00644-w.
[2] Y. Shi, W. Dong, W. Lin, and Y. Gao, “Soft Wearable Robots: Development Status and Technical Challenges,” Sensors, vol. 22, no. 19. MDPI, Oct. 2022, doi: 10.3390/s22197584.
[3] A. Ali, V. Fontanari, W. Schmoelz, and S. K. Agrawal, “Systematic Review of Back-Support Exoskeletons and Soft Robotic Suits,” Frontiers in Bioengineering and Biotechnology, vol. 9. Frontiers Media S.A., Nov. 2021, doi: 10.3389/fbioe.2021.765257.
[4] H. A. Mohsen, A. Al-ibadi, and T. Y. Abdalla, “A Variable-Length , Variable-Stiffness Soft Endoscope ( VL-VS-SE ) for Upper Gastrointestinal Tract,” J. Robot. Res., vol. 1, no. 1, pp. 1–6, 2024.
[5] A. Al-Ibadi, “The Design and Implementation of a Single-Actuator Soft Robot Arm for Lower Back Pain Reduction,” Iraqi J. Electr. Electron. Eng., vol. sceeer, no. 3d, pp. 25–29, Jul. 2020, doi: 10.37917/ijeee.sceeer.3rd.4.
[6] M. Ide, T. Hashimoto, K. Matsumoto, and H. Kobayashi, “Evaluation of the Power Assist Effect of Muscle Suit for Lower Back Support,” IEEE Access, vol. 9, pp. 3249–3260, 2021, doi: 10.1109/ACCESS.2020.3047637.
[7] P. Manns, M. Sreenivasa, M. Millard, and K. Mombaur, “Motion Optimization and Parameter Identification for a Human and Lower Back Exoskeleton Model,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1564–1570, Jul. 2017, doi: 10.1109/LRA.2017.2676355.
[8] X. Yang et al., “Spine-Inspired Continuum Soft Exoskeleton for Stoop Lifting Assistance,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4547–4554, Oct. 2019, doi: 10.1109/LRA.2019.2935351.
[9] K. Huysamen, M. de Looze, T. Bosch, J. Ortiz, S. Toxiri, and L. W. O’Sullivan, “Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks,” Appl. Ergon., vol. 68, pp. 125–131, Apr. 2018, doi: 10.1016/j.apergo.2017.11.004.
[10] G. Ataei, R. Abedi, Y. Mohammadi, and N. Fatouraee, “Analysing the effect of wearable lift-assist vest in squat lifting task using back muscle EMG data and musculoskeletal model,” Phys. Eng. Sci. Med., vol. 43, no. 2, pp. 651–658, Jun. 2020, doi: 10.1007/s13246-020-00872-5.
[11] L. Roveda, L. Savani, S. Arlati, T. Dinon, G. Legnani, and L. Molinari Tosatti, “Design methodology of an active back-support exoskeleton with adaptable backbone-based kinematics,” Int. J. Ind. Ergon., vol. 79, Sep. 2020, doi: 10.1016/j.ergon.2020.102991.
[12] J. Beil and T. Asfour, “New mechanism for a 3 DOF exoskeleton hip joint with five revolute and two prismatic joints,” in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Jun. 2016, pp. 787–792, doi: 10.1109/BIOROB.2016.7523723.
[13] M. Boocock, Y. Naudé, S. Taylor, J. Kilby, and G. Mawston, “Influencing lumbar posture through real-time biofeedback and its effects on the kinematics and kinetics of a repetitive lifting task,” Gait Posture, vol. 73, pp. 93–100, Sep. 2019, doi: 10.1016/j.gaitpost.2019.07.127.
[14] J. Song, A. Zhu, Y. Tu, and J. Zou, “Multijoint passive elastic spine exoskeleton for stoop lifting assistance,” Int. J. Adv. Robot. Syst., vol. 18, no. 6, Nov. 2021, doi: 10.1177/17298814211062033.
[15] T. Poliero et al., “Versatile and non-versatile occupational back-support exoskeletons: A comparison in laboratory and field studies – ADDENDUM,” Wearable Technologies, vol. 5. 2024, doi: 10.1017/wtc.2023.27.
[16] H. Al-Mosawi, A. Al-Ibadi, and T. Abdalla, “A Comprehensive Comparison of Different Control Strategies to Adjust the Length of the Soft Contractor Pneumatic Muscle Actuator,” Iraqi J. Electr. Electron. Eng., vol. 18, no. 2, pp. 101–109, Dec. 2022, doi: 10.37917/ijeee.18.2.13.
[17] B. A. Frost, S. Camarero-Espinosa, and E. Johan Foster, “Materials for the spine: Anatomy, problems, and solutions,” Materials, vol. 12, no. 2. 2019, doi: 10.3390/ma12020253.
[18] S. Naoum, A. V. Vasiliadis, C. Koutserimpas, N. Mylonakis, M. Kotsapas, and K. Katakalos, “Finite Element Method for the Evaluation of the Human Spine: A Literature Overview,” J. Funct. Biomater., vol. 12, no. 3, p. 43, Jul. 2021, doi: 10.3390/jfb12030043.
[19] R. Rupp et al., “International Standards for Neurological Classification of Spinal Cord Injury,” Top. Spinal Cord Inj. Rehabil., vol. 27, no. 2, pp. 1–22, Mar. 2021, doi: 10.46292/sci2702-1.
[20] H. Shayestehpour, J. Rasmussen, P. Galibarov, and C. Wong, “An articulated spine and ribcage kinematic model for simulation of scoliosis deformities,” Multibody System Dynamics, vol. 53, no. 2. pp. 115–134, 2021, doi: 10.1007/s11044-021-09787-9.
[21] Ž. Kozinc, S. Baltrusch, H. Houdijk, and N. Šarabon, “Reliability of a battery of tests for functional evaluation of trunk exoskeletons,” Applied Ergonomics, vol. 86. 2020, doi: 10.1016/j.apergo.2020.103117.
[22] A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “A Robot Continuum Arm Inspired by the Human Upper Limb: The Pronation and Supination Rotating Behaviour,” 2020, doi: 10.1109/ICECCE49384.2020.9179338.
[23] H. Su et al., “Pneumatic Soft Robots: Challenges and Benefits,” Actuators, vol. 11, no. 3, p. 92, Mar. 2022, doi: 10.3390/act11030092.
[24] M. Irshaidat, M. Soufian, A. Al-Ibadi, and S. Nefti-Meziani, “A novel elbow pneumatic muscle actuator for exoskeleton arm in post-stroke rehabilitation,” 2019, doi: 10.1109/ROBOSOFT.2019.8722813.
[25] Mohammed, Muna, A. Al-Ibadi, “Types and Applications of Soft Robot Arms and End-Effectors : A Review,” J. Robot. Res., vol. 1, no. 1, pp. 40–52, 2024.
[26] C. Lee et al., “Soft robot review,” Int. J. Control. Autom. Syst., vol. 15, no. 1, pp. 3–15, Feb. 2017, doi: 10.1007/s12555-016-0462-3.
[27] J. Jørgensen, K. B. Bojesen, and E. Jochum, “Is a Soft Robot More ‘Natural’? Exploring the Perception of Soft Robotics in Human–Robot Interaction,” Int. J. Soc. Robot., vol. 14, no. 1, pp. 95–113, Jan. 2022, doi: 10.1007/s12369-021-00761-1.
[28] M. Goršič, Y. Song, B. Dai, and D. Novak, “Evaluation of the HeroWear Apex back-assist exosuit during multiple brief tasks,” J. Biomech., vol. 126, p. 110620, Sep. 2021, doi: 10.1016/j.jbiomech.2021.110620.
[29] J.-Y. Kim et al., “Spine-like Joint Link Mechanism to Design Wearable Assistive Devices,” Sensors, vol. 22, no. 6, p. 2314, Mar. 2022, doi: 10.3390/s22062314.
[30] S. H. Kang and G. A. Mirka, “Effect of trunk flexion angle and time on lumbar and abdominal muscle activity while wearing a passive back-support exosuit device during simple posture-maintenance tasks,” Ergonomics, vol. 66, no. 12, pp. 2182–2192, Dec. 2023, doi: 10.1080/00140139.2023.2191908.
[31] T. Luger, M. Bär, R. Seibt, P. Rimmele, M. A. Rieger, and B. Steinhilber, “A passive back exoskeleton supporting symmetric and asymmetric lifting in stoop and squat posture reduces trunk and hip extensor muscle activity and adjusts body posture – A laboratory study,” Appl. Ergon., vol. 97, p. 103530, Nov. 2021, doi: 10.1016/j.apergo.2021.103530.
[32] R. M. van Sluijs, M. Wehrli, A. Brunner, and O. Lambercy, “Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures,” J. Biomech., vol. 149, p. 111489, Mar. 2023, doi: 10.1016/j.jbiomech.2023.111489.
[33] R. M. van Sluijs, D. Rodriguez-Cianca, C. B. Sanz-Morère, S. Massardi, V. Bartenbach, and D. Torricelli, “A method to quantify the reduction of back and hip muscle fatigue of lift-support exoskeletons,” Wearable Technol., vol. 4, p. e2, Jan. 2023, doi: 10.1017/wtc.2022.32.
[34] A. N. Cuttilan, R. F. Natividad, and R. C. H. Yeow, “Fabric-Based, Pneumatic Exosuit for Lower-Back Support in Manual-Handling Tasks,” Actuators, vol. 12, no. 7, Jul. 2023, doi: 10.3390/act12070273.
[35] H. Inose, S. Mohri, Y. Yamada, T. Nakamura, K. Yokoyama, and I. Kikutani, “Development of a lightweight power-assist suit using pneumatic artificial muscles and balloon-amplification mechanism,” in 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Nov. 2016, pp. 1–6, doi: 10.1109/ICARCV.2016.7838564.
[36] Q. E. Lei et al., “Design and characterize of kirigami-inspired springs and the application in vertebrae exoskeleton for adolescent idiopathic scoliosis brace treatment,” Frontiers in Mechanical Engineering, vol. 9. 2023, doi: 10.3389/fmech.2023.1152930.
[37] R. Basu, “Low Cost Control of Robotic Arms,” J. Robot. Res., vol. 1, no. 1, pp. 3–9, 2024.
[38] A. Al-Ibadi, S. Nefti-Meziani, S. Davis, and T. Theodoridis, “Novel Design and Position Control Strategy of a Soft Robot Arm,” Robotics, vol. 7, no. 4, p. 72, Nov. 2018, doi: 10.3390/robotics7040072.
[39] H. A. Mohsen, A. Al-Ibadi, and T. Y. Abdalla, “Different Types of Control Systems for the Contraction Pneumatic Muscle Actuator,” in 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), May 2022, pp. 956–961, doi: 10.1109/CoDIT55151.2022.9804047.
[40] A. Ali, V. Fontanari, W. Schmölz, and S. K. Agrawal, “Active Soft Brace for Scoliotic Spine: A Finite Element Study to Evaluate in-Brace Correction,” Robotics, vol. 11, no. 2, p. 37, Mar. 2022, doi: 10.3390/robotics11020037.
[41] S. Toxiri et al., “Back-support exoskeletons for occupational use: An overview of technological advances and trends,” IISE Transactions on Occupational Ergonomics and Human Factors, vol. 7, no. 3–4. pp. 237–249, 2019, doi: 10.1080/24725838.2019.1626303.
[42] A. Mohammadzadeh Gonabadi, P. Antonellis, A. C. Dzewaltowski, S. A. Myers, I. I. Pipinos, and P. Malcolm, “Design and Evaluation of a Bilateral Semi-Rigid Exoskeleton to Assist Hip Motion,” Biomimetics, vol. 9, no. 4, p. 211, Mar. 2024, doi: 10.3390/biomimetics9040211.
[43] T. S. Lee and E. A. Alandoli, “A critical review of modelling methods for flexible and rigid link manipulators,” J. Brazilian Soc. Mech. Sci. Eng., vol. 42, no. 10, p. 508, Oct. 2020, doi: 10.1007/s40430-020-02602-0.
[44] T. Poliero, V. Fanti, M. Sposito, D. G. Caldwell, and C. Di Natali, “Active and Passive Back-Support Exoskeletons: A Comparison in Static and Dynamic Tasks,” IEEE Robotics and Automation Letters, vol. 7, no. 3. pp. 8463–8470, 2022, doi: 10.1109/LRA.2022.3188439.
[45] M. Lazzaroni et al., “Improving the Efficacy of an Active Back-Support Exoskeleton for Manual Material Handling Using the Accelerometer Signal,” IEEE Robotics and Automation Letters, vol. 7, no. 3. pp. 7716–7721, 2022, doi: 10.1109/LRA.2022.3183757.
[46] U. Heo, S. J. Kim, and J. Kim, “Backdrivable and Fully-Portable Pneumatic Back Support Exoskeleton for Lifting Assistance,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2047–2053, Apr. 2020, doi: 10.1109/LRA.2020.2969169.
[47] M. Lazzaroni et al., “Acceleration-based Assistive Strategy to Control a Back-support Exoskeleton for Load Handling: Preliminary Evaluation,” in 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Jun. 2019, pp. 625–630, doi: 10.1109/ICORR.2019.8779392.
[48] S. Toxiri, A. Calanca, J. Ortiz, P. Fiorini, and D. G. Caldwell, “A Parallel-Elastic Actuator for a Torque-Controlled Back-Support Exoskeleton,” IEEE Robot. Autom. Lett., vol. 3, no. 1, pp. 492–499, Jan. 2018, doi: 10.1109/LRA.2017.2768120.
[49] S. Toxiri et al., “Rationale, implementation and evaluation of assistive strategies for an active back-support exoskeleton,” Frontiers Robotics AI, vol. 5, no. MAY. 2018, doi: 10.3389/frobt.2018.00053.
[50] J. won Lee and G. Kim, “Design and Control of a Lifting Assist Device for Preventing Lower Back Injuries in Industrial Athletes,” Int. J. Precis. Eng. Manuf., vol. 20, no. 10, pp. 1825–1838, Oct. 2019, doi: 10.1007/s12541-019-00183-0.
[51] A. S. Koopman et al., “Biomechanical evaluation of a new passive back support exoskeleton,” J. Biomech., vol. 105, May 2020, doi: 10.1016/j.jbiomech.2020.109795.
[52] K. Miura et al., “The hybrid assistive limb (HAL) for Care Support successfully reduced lumbar load in repetitive lifting movements,” J. Clin. Neurosci., vol. 53, pp. 276–279, Jul. 2018, doi: 10.1016/j.jocn.2018.04.057.
[53] A. von Glinski et al., “Effectiveness of an on-body lifting aid (HAL® for care support) to reduce lower back muscle activity during repetitive lifting tasks,” J. Clin. Neurosci., vol. 63, pp. 249–255, May 2019, doi: 10.1016/j.jocn.2019.01.038.
[54] A. A. Simon, M. M. Alemi, and A. T. Asbeck, “Kinematic effects of a passive lift assistive exoskeleton,” J. Biomech., vol. 120, p. 110317, May 2021, doi: 10.1016/j.jbiomech.2021.110317.
[55] P. Yin, L. Yang, C. Wang, and S. Qu, “Effects of wearable power assist device on low back fatigue during repetitive lifting tasks,” Clin. Biomech., vol. 70, pp. 59–65, Dec. 2019, doi: 10.1016/j.clinbiomech.2019.07.023.
[56] J. H. Park, P. R. Stegall, D. P. Roye, and S. K. Agrawal, “Robotic Spine Exoskeleton (RoSE): Characterizing the 3-d stiffness of the human torso in the treatment of spine deformity,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 5. pp. 1026–1035, 2018, doi: 10.1109/TNSRE.2018.2821652.