A Variable-Length, Variable-Stiffness Soft Endoscope (VL-VS-SE) for Upper Gastrointestinal Tract  

A Variable-Length, Variable-Stiffness Soft Endoscope (VL-VS-SE) for Upper Gastrointestinal Tract  


Journal: Journal of Robotics Research (JRR), Volume:1, Issue:1, Pages: 1-6  Download pdf

Authors: Heba Ali Mohsen, Alaa Al-Ibadi, Turki Y. Abdalla

Date: 7-2024

Abstract: Endoscopy usually uses to investigate and diagnose numerous types of illnesses and infections. This procedure has been used successfully in the fields of thoracic surgery, urology, and in recent years gynecology. The process of Endoscopy occurs by inserting the endoscope inside the human body through the natural orifices of the body to diagnose health problems either in the upper gastrointestinal (GI) tract, which comprises the oral cavity, pharynx, esophagus, stomach, and small intestine, or the lower gastrointestinal (GI) tract, which includes of the large intestine and the anus. While the process is dealing with the soft organs, this article proposes a variable stiffness soft endoscope to ensure no impact on the human body is occurring. The endoscope is fully designed and manufactured by using a contraction pneumatic muscle actuator (PMA). The proposed device has the ability to change its length and stiffness. These features are controlled by experts. The system provides a live video by attaching a high-resolution camera at the front end.

Keywords: Endoscope, Mouth, Esophagus, PMA, Variable Length, Variable Stiffness, Human.


References: 

[1] J. H. Palep, “Robotic assisted minimally invasive surgery,” J. Minim. Access Surg., vol. 5, no. 1, p. 1, 2009.

[2] C. J. Hawkey, J. Bosch, J. E. Richter, G. Garcia-Tsao, and F. K. L. Chan, Textbook of clinical gastroenterology and hepatology. John Wiley & Sons, 2012.

[3] A. Loeve, P. Breedveld, and J. Dankelman, “Scopes too flexible... and too stiff,” IEEE Pulse, vol. 1, no. 3, pp. 26–41, 2010.

[4] K. W. Kwok, H. Wurdemann, A. Arezzo, A. Menciassi, and K. Althoefer, “Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook,” IEEE Trans. Robot., 2022.

[5] I. De Falco, M. Cianchetti, and A. Menciassi, “STIFF-FLOP surgical manipulator: design and preliminary motion evaluation,” in Proc. 4th Workshop Computer/Robot Assisted Surgery (CRAS), 2014, pp. 131–134.

[6] J. E. Bernth, A. Arezzo, and H. Liu, “A novel robotic meshworm with segment-bending anchoring for colonoscopy,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1718–1724, 2017.

[7] H. Abidi et al., “Highly dexterous 2‐module soft robot for intra‐organ navigation in minimally invasive surgery,” Int. J. Med. Robot. Comput. Assist. Surg., vol. 14, no. 1, p. e1875, 2018.

[8] C. Durcan et al., “Experimental investigations of the human oesophagus: anisotropic properties of the embalmed mucosa–submucosa layer under large deformation,” Biomech. Model. Mechanobiol., vol. 21, no. 6, pp. 1685–1702, Dec. 2022, doi: 10.1007/s10237-022-01613-1.

[9] C. Cock and T. Omari, “Systematic Review of Pharyngeal and Esophageal Manometry in Healthy or Dysphagic Older Persons (>60 years),” Geriatrics, vol. 3, no. 4, p. 67, Oct. 2018, doi: 10.3390/geriatrics3040067.

[10] C. M. Knauer, J. A. Castell, C. B. Dalton, L. Nowak, and D. O. Castell, “Pharyngeal/upper esophageal sphincter pressure dynamics in humans,” Dig. Dis. Sci., vol. 35, no. 6, pp. 774–780, 1990, doi: 10.1007/bf01540183.

[11] M. S. Levine and S. E. Rubesin, “History and Evolution of the Barium Swallow for Evaluation of the Pharynx and Esophagus,” Dysphagia, vol. 32, no. 1, pp. 55–72, Feb. 2017, doi: 10.1007/s00455-016-9774-y.

[12] Y. Khalifa, C. Donohue, J. L. Coyle, and E. Sejdic, “Upper Esophageal Sphincter Opening Segmentation with Convolutional Recurrent Neural Networks in High Resolution Cervical Auscultation,” IEEE J. Biomed. Heal. Informatics, vol. 25, no. 2, pp. 493–503, 2021, doi: 10.1109/JBHI.2020.3000057.

[13] H. Shiwaku and H. Inoue, “Recent advancement of submucosal endoscopy: Peroral endoscopic myotomy and offshoot,” Dig. Endosc., vol. 34, no. S2, pp. 36–39, May 2022, doi: 10.1111/den.14155.

[14] S. Kiuchi, J. Sasaki, T. Arai, and T. Suzuki, “Functional Disorders of the Pharynx and Esophagus,” Acta Otolaryngol., vol. 68, no. sup256, pp. 1–30, Jan. 1969, doi: 10.3109/00016486909129232.

[15] A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “The Design, Kinematics and Torque Analysis of the Self-Bending Soft Contraction Actuator,” Actuators, vol. 9, no. 2, p. 33, Apr. 2020, doi: 10.3390/act9020033.

[16] T. Park and Y. Cha, “Soft mobile robot inspired by animal-like running motion,” Sci. Rep., vol. 9, no. 1, p. 14700, Dec. 2019, doi: 10.1038/s41598-019-51308-4.

[17] A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “Controlling of Pneumatic Muscle Actuator Systems by Parallel Structure of Neural Network and Proportional Controllers (PNNP),” Front. Robot. AI, vol. 7, Oct. 2020, doi: 10.3389/frobt.2020.00115.

[18] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, vol. 521, no. 7553, pp. 467–475, May 2015, doi: 10.1038/nature14543.

[19] T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control Strategies for Soft Robotic Manipulators: A Survey,” Soft Robot., vol. 5, no. 2, pp. 149–163, Apr. 2018, doi: 10.1089/soro.2017.0007.

[20] M. Manti, T. Hassan, G. Passetti, N. D’Elia, C. Laschi, and M. Cianchetti, “A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping,” Soft Robot., vol. 2, no. 3, pp. 107–116, Sep. 2015, doi: 10.1089/soro.2015.0009.

[21] M. E. Giannaccini, C. Xiang, A. Atyabi, T. Theodoridis, S. Nefti-Meziani, and S. Davis, “Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning,” Soft Robot., 2018, doi: 10.1089/soro.2016.0066.

[22] H. A. Mohsen, A. Al-Ibadi, and T. Y. Abdalla, “Different Types of Control Systems for the Contraction Pneumatic Muscle Actuator,” in 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), May 2022, pp. 956–961, doi: 10.1109/CoDIT55151.2022.9804047.

[23] B. Kalita, A. Leonessa, and S. K. Dwivedy, “A Review on the Development of Pneumatic Artificial Muscle Actuators: Force Model and Application,” Actuators, vol. 11, no. 10, p. 288, Oct. 2022, doi: 10.3390/act11100288.

[24] H. Al-Mosawi, A. Al-Ibadi, and T. Abdalla, “A Comprehensive Comparison of Different Control Strategies to Adjust the Length of the Soft Contractor Pneumatic Muscle Actuator,” Iraqi J. Electr. Electron. Eng., vol. 18, no. 2, pp. 101–109, Dec. 2022, doi: 10.37917/ijeee.18.2.13.

[25] A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “Efficient Structure-Based Models for the McKibben Contraction Pneumatic Muscle Actuator: The Full Description of the Behaviour of the Contraction PMA,” Actuators, vol. 6, no. 4, p. 32, Oct. 2017, doi: 10.3390/act6040032.

[26] K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. Control Syst. Technol., vol. 13, no. 4, pp. 559–576, 2005.

[27] J. Fan, J. Zhong, J. Zhao, and Y. Zhu, “BP neural network tuned PID controller for position tracking of a pneumatic artificial muscle,” Technol. Heal. Care, vol. 23, pp. S231–S238, 2015, doi: 10.3233/THC-150958.

[28] T. K. Shen, I. F. Lee, P. H. Lin, C. I. Lin, P. C. Lin, and W. P. Shih, “Implementation of a PID controller for a robotic leg actuated by pneumatic artificial muscles,” 2015, doi: 10.6567/IFToMM.14TH.WC.OS13.086.

[29] G. Andrikopoulos, G. Nikolakopoulos, and S. Manesis, “Advanced nonlinear PID-based antagonistic control for pneumatic muscle actuators,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6926–6937, 2014, doi: 10.1109/TIE.2014.2316255.

[30] T. D. C. Thanh and K. K. Ahn, “Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network,” Mechatronics, vol. 16, no. 9, pp. 577–587, Nov. 2006, doi: 10.1016/j.mechatronics.2006.03.011.

[31] A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “A circular pneumatic muscle actuator (CPMA) inspired by human skeletal muscles,” in 2018 IEEE International Conference on Soft Robotics (RoboSoft), Apr. 2018, pp. 7–12, doi: 10.1109/ROBOSOFT.2018.8404889.

A Variable-Length, Variable-Stiffness Soft Endoscope (VL-VS-SE) for Upper Gastrointestinal Tract.pdf