Journal: Journal of Physico-Chemical Material (JPCM), Volume:1, Issue:1, Pages: 7-12 Download pdf
Date: 8-2024
Authors: Rodney N. Abugre , G. K. Nkrumah-Buandoh , S. A. Atarah, and G. G. Hagoss
Abstract: First principles computational approach on the Structural and Electrochemical properties of undoped LiCoO2 and Ni doped LiCoO2 is studied with Vesta Application Software and Density Functional Theory calculations on Quantum Espresso Package. Results from the study indicate doping LiCoO2 with Ni increases the cell voltage and reduces the rate of formation of oxygen vacancies ensuring there is structural stability of the cathode during the lithium process of charging and discharging. Overall, the Structural and Electrochemical properties of Ni doped LiCoO2 as cathode material is greatly improved increasing the life span as compared to the intrinsic LiCoO2 as cathode material for battery applications.
Keywords: Physico-chemical properties; structural properties; electrochemical properties; crystal structure properties; Density functional theory.
References:
[1] O. vanVliet, A.S.Brouwer, T.Kuramochi, M.vandenBroek, A. Faaij, “Energy Use, Cost and CO2 Emissions of Electric Cars,” Journal of Power Sources 196 (2011) 2298–2310.
[2] J.B. Goodenough, Y. Kim, “Challenges for Rechargeable Li Batteries” Chemistry of Materials 22 (2010) 587- 603.
[3] J.M. Tarascon, M.Armand, “Issues and challenges facing rechargeable lithium batteries” Nature 414 (2001) 359–367.
[4] D. Kovacheva, B. Markovsky, G. Salitra, Y. Talyosef, M. Gorova, E. Levi, M. Riboch, H.-J. Kim, D. Aurbach, Electrochimica, “Electrochemical behavior of electrodes comprising micro- and nano-sized particles of LiNi 0.5Mn 1.5O 4: A comparative study” Acta 50 (2005)5553–5560.
[5] Cathode materials for next generation lithium ion batteries Jiantie Xua,b, ShixueDoub,n, HuakunLiub, LimingDaia,nn, Nano Energy(2013) 2, 439–442.
[6] Lipson, A. L.; Han, S.-D.; Pan, B.; See, K. A.; Gewirth, A. A.; Liao, C.; Vaughey, J. T.; Ingram, B. J., “Practical Stability Limits of Magnesium Electrolytes”. Journal of The Electrochemical Society 2016, 163, (10), A2253-A2257.
[7] Bitenc J and Dominko R (2018),” Opportunities and Challenges in the Development of Cathode Materials for Rechargeable Mg Batteries”. Front. Chem. 6:634. doi:10.3389/fchem.2018.00634.
[8] Zhong G, Gong J, Wang C, Xu K and Chen H (2018), “Comparison of the Electrochemical Performance and Thermal Stability for Three Kinds of Charged Cathodes.” Front. Energy Res. 6:110. doi: 10.3389/fenrg.2018.00110.
[9] Haegyeom Kim et al Investigation of Potassium storage in Layered P3-Type K_0.5 MnO_2 cathode”, Adv. Mater. 2017, 29, 1702480. doi: 10.1002/adma.201702480.
[10] Frayret, C.; Villesuzanne, A.; Spaldin, N.; Bousquet, E.; Chotard, J. N.; Recham, N.; Tarascon, J. M. “LiMSO4F (M = Fe, Co and Ni): promising new positive electrode materials through the DFT microscope”. Phys. Chem. Chem. Phys. 2010, 12, 15512–15522
[11] Jungwoo Woo et al, “Theoretical dopant screening and processing optimization for Vanadium disulfide (VS_2) as cathode material for Li-air batteries: A DFT study”, Applied Surface Science 508 (2020) 145276. doi.org/10.1016/j.apsusc.2020.145276.
[12] Yuting Xie et al, “Deep insight into the Lithium transportation mechanism and lithium deintercalation study on Ꜫ-LiVOPO_4 cathode material by atomistic simulation and first principles method”, Journal of Power Sources 503 (2021) 230061, doi.org/10.1016/j.jpowsour.2021.230061.
[13] S Kirklin et al (2015), ‘The Open Quantum Materials Database (OQMD) assessing the accuracy of DFT formation energies’, Computational materials Journal, issue No.1,volumeNo.15010;Doi:10.1038/npjcompumats.2015.10
[14] Aydinol, M. K.; Kohan, A. F.; Ceder, G.; Cho, K.; Joannopoulos, J. “Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides”. Phys. Rev. B: Condens. Matter Mater. Phys. 1997, 56 (3), 1354−1365.
[15] Meng, Y. S.; Arroyo-de Dompablo, M. E. “First principles computational materials design for energy storage materials in lithium-ion batteries”. Energy Environ. Sci. 2009, 2 (6), 589−609.
[16] M. Saiful Islam and Craig A. J. Fisher, “Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties”, Chem. Soc. Rev., 2014, 43, 185.
[17] W. Hu, H.W. Wang, W.W. Luo, B. Xu, C.Y. Ouyang, “Formation and thermodynamic stability of oxygen vacancies in typical cathode materials for Li-ion batteries: Density functional theory study,” Solid State Ion. 347 (2020), 115257.
[18] Islam, M. S.; Fisher, C. A. “Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties”. Chem. Soc. Rev. 2014, 43 (1), 185−204.
[19] Y.H. Chen, J. Zhang, Y. Li, Y.F. Zhang, S.P. Huang, W. Lin, W.K. Chen, “Effects of doping high-valence transition metal (V, Nb and Zr) ions on the structure and electrochemical performance of LIB cathode material LiNi0.8Co0.1Mn0.1O2,” Phys. Chem. Chem. Phys. 23 (2021) 11528–11537.
[20] W. Hu, H.W. Wang, W.W. Luo, B. Xu, C.Y. Ouyang, Formation and thermodynamic stability of oxygen vacancies in typical cathode materials for Li-ion batteries: Density functional theory study, Solid State Ion. 347 (2020), 115257.