Journal: Journal of Physico-Chemical Material (JPCM), Volume:1, Issue:1, Pages: 19-25 Download pdf
Authors: Helen Kathum Abd Al-Kareem Alsultan and Muthik A. Guda
Date: 8-2024
Abstract: Nanotechnology begins with the characterization, production, and possible uses of a wide range of nanoscale materials. Because of their high surface-to-volume ratio and other essential features, nanomaterials have served as a platform for researchers in a variety of domains throughout the last few decades. In the field of nanobiotechnology, the fabrication of environmentally friendly and reliable nanoparticles is important. Among nanoparticles, zirconium nanoparticles are biocompatible and possess distinct mechanical, electrical, and optical properties that attract the attention of many researchers. Zirconium nanoparticles receive many diverse biomedical applications due to their distinctive antibacterial, anti-oxidant, anti-cancer and anti-fungal properties. In recent decades, an environmentally friendly and safe approach has been developed to produce nanoparticles avoiding dangerous by-products. One of these safe methods is the bio-green approach. Pollution and diseases resulting from bacterial infections are major issues that can be solved completely or partially using nanotechnology. Many bacterial species are pathogenic to humans and other organisms, and some of them are resistant to drugs, so continuous research is required to address this problem. In this review, zirconium oxide and its antibacterial applications are studied.
Keywords: Zirconium Oxide Nanoparticles, anti-bacterial growth, nano-particles, green synthesis, Ecofriendly nanoparticles
References:
[1] Raghunath, E. Perumal, Metal oxide nanoparticles as antimicrobial agents: a promise for the future, Int. J. Anti- microb. Agents 49 (2017) 137e152, https://doi.org/10.1016/j. ijantimicag.2016.11.011.
[2] T. Ali, M. A. Guda, A. I. Oraibi, I. K. Salih, A. H. Shather, A. T. Abd Ali, A. L. Azzawi, and H. A. Almashhadani, "Fe3O4 supported [Cu (ii)(met)(pro-H) 2] complex as a novel nanomagnetic catalytic system for room temperature C–O coupling reactions", RSC advances vol. 13 No. 32, pp. 22538-22548, 2023. https://doi.org/10.1039/D3RA03509C
[3] Y. Rahi and M. A. Guda, "Effect Biosynthesis of fenugreek leaves nanomaterial on some plant's germination using saline water", Revis Bionatura, vol. 8, no. 2, pp. 1837-1746, 2023.
[4] A.A.S. Habib, A.M. Yousif, Effect of nano-zirconium oxide and other applications on cowpea seedlings growth under T salt stress, Iraqi J. Sci. 59 (2018) 1006e1011, https://doi.org/10. 24996/IJS.2018.59.2C.3.
[5] Agarwal H, Venkat Kumar S, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resour Technol 3:406–413. https://doi.org/10.1016/j.reffit.2017. 03.002.
[6] Akintelu SA, Folorunso AS (2020) A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical appli- cations. Bionanoscience 10:848–863. https://doi.org/10.1007/ s12668-020-00774-6
[7] Alizadeh, S., Madrakian, T., & Bahram, M.(2019).Selective and Sensitive Simultaneous Determination of Mercury and Cadmium based on the Aggregation of PHCA Modified-AuNPs in West Azerbaijan Regional Waters. Advanced Journal of Chemistry-Section A, 2(1, pp. 1-93.), 57-72, -
[8] Al-Yasiri, Sada Abdul Khaleq Hassan (2013). Nanotechnology in construction and sustainability. Publications of Kuwait University of Science and Technology, Kuwait: (1), 181-184.
[9] Al-Zaqri N, Muthuvel A, Jothibas M et al (2021) Biosynthesis of zir- conium oxide nanoparticles using Wrightia tinctoria leaf extract: characterization, photocatalytic degradation and antibacterial activities. Inorg Chem Commun 127:108507. https://doi.org/10. 1016/j.inoche.2021.108507
[10] Ansari, S.A.; Satar, R.; Panda, D.S.; Zaidi, S.K.; Chibber, S.; Khan, M.J.; Khan, T.A.; Jafri, M.A. & Alqahtani, M.H.(2014).Surface Engineering of Multifunctional Nanocomposites for Biomedical Applications: A Brief Update. Iran J. Biotech.12(1):1-7
(A) Balaji, S., et al., Nano-zirconia–evaluation of its antioxidant and anticancer activity. Journal of Photochemistry and Photobiology B: Biology, 2017. 170: p. 125-133.
(B) Balaji, S., Mandal, B. K., Ranjan, S., Dasgupta, N., & Chidambaram, R. (2017). Nano-zirconia–evaluation of its antioxidant and anticancer activity. Journal of Photochemistry and Photobiology B: Biology, 170, 125-133.
[11] Bandeira M, Giovanela M, Roesch-Ely M et al (2020) Green synthe- sis of zinc oxide nanoparticles: a review of the synthesis meth- odology and mechanism of formation. Sustain Chem Pharm 15:100223. https://doi.org/10.1016/j.scp.2020.100223.
[12] Basak, S.; Singh, P. and Rajurkar, M. (2016). Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. Journal of Pathogens . 1-5.
[13] Bolade OP, Williams AB, Benson NU (2020) Green synthesis of iron- based nanomaterials for environmental remediation: a review. Environ Nanotechnol Monit Manag 13:100279. https://doi.org/ 10.1016/j.enmm.2019.100279.
[14] CDC. Antimicrobial (AR) Threats Report. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 1 December 2022).
[15] Chen F, Wu Y-R, Wu J-M et al (2021) Preparation and characterization of ZrO2-Al2O3 bioceramics by stereolithography technology for dental restorations. Addit Manuf 44:102055. https://doi.org/10. 1016/j.addma.2021.102055.
[16] D. M. Husayn, and M. A. Guda, "Effect of zinc oxide nanoparticles on biomarkers of chlorophyll and carotene in some wild plants", AIP Conference Proceedings, vol. 2787, no. 1, 2023. https://doi.org/10.1063/5.0148197
[17] D. M. Husayn, and M. A. Guda, "Response of some wild plants in antioxidant enzymes by zinc oxide nanoparticles", AIP Conference Proceedings, vol. 2787 no. 1, 2023. https://doi.org/10.1063/5.0148199
[18] El-Mokhtar, M.A.; Hetta, H.F. Ambulance vehicles as a source of multidrug-resistant infections: A multicenter study in Assiut City, Egypt. Infect. Drug Resist. 2018, 11, 587. [CrossRef] [PubMed].
[19] Emami-Karvani, Z. and Chehrazi, P. (2011). Antibacterial activity of ZnO nanoparticle on gram positive and gram-negative bacteria. African Journal of Microbiology Research. 5(12): 1368-1373 p.
[20] F.T. Thema, E. Manikandan, M.S. Dhlamini, M. Maaza, Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract, Mater. Lett. 161 (2015) 124–127.
[21] G. L. Hakeem, M. A. Guda, M. M. Alabassi, A. J. T. Altamimi, and H. A. N. Alhadrawi, "Use of wild plant species as indicator of some heavy metals in the soil of General Company for tire industry in Najaf Governorate", IOP Conference Series: Materials Science and Engineering, vol. 870, p. 012099, 2020. https://doi.org/10.1088/1757-899X/870/1/012099
[22] Ghomi GAR, Mohammadi-Khanaposhti M, Vahidi H et al (2019) Fun- gus-mediated extracellular biosynthesis and characterization of zir- conium nanoparticles using standard penicillium species and their preliminary bactericidal potential: a novel biological approach to nanoparticle synthesis. Iran J Pharm Res 18:2101–2110.
[23] Ghosh Chaudhuri, R., & Paria, S. (2011). Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews, 112(4), 2373-2433.
[24] Gillani, R., Ercan, B., Qiao, A., & Webster, T. J. (2010). Nanofunctionalized zirconia and barium sulfate particles as bone cement additives. International journal of nanomedicine, 5, 1.
[25] Gowri S, Gandhi RR, Senthil S, Sundrarajan M (2015) Effect of calci- nation temperature on nyctanthes plant mediated zirconia nano- particles; optical and antibacterial activity for optimized zirconia. J Bionanoscience 9:181–189. https://doi.org/10.1166/jbns.2015. 1297.
[26] Gowri, S., R. R. Gandhi, and M. Sundrarajan, Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol. Journal of Materials Science & Technology, 2014. 30 (8): p. 782-790.
[27 ] Hassan NS, Jalil AA (2022) A review on self-modification of zirconium dioxide nanocatalysts with enhanced visible-light-driven photo- degradation of organic pollutants. J Hazard Mater 423:126996. https://doi.org/10.1016/j.jhazmat.2021.126996.
[28] Hsu, C.-M., et al., Green synthesis of nano-Co3O4 by microbial induced precipitation (MIP) process using Bacillus pasteurii and its application as supercapacitor. Materials Today Communications, 2018. 14: p. 302-311.
[29] Indiarto R, Indriana LPA, Andoyo R et al (2021) Bottom–up nanoparticle synthesis: a review of techniques, polyphenol-based core materi- als, and their properties. Eur Food Res Technol. https://doi.org/10. 1007/s00217-021-03867-y.
[30] J. B. Fathima, A. Pugazhendhi, and R. Venis, “ Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental careˮ, Microbial pathogenesis, Vol. No.110, PP. 245-251, 2017.
[31] Jadoun S, Arif R, Jangid NK, Meena RK (2021) Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett 19:355–374. https://doi.org/10.1007/s10311-020-01074-x.
[32] Jalill, R. D. A., Jawad, M. M. H. M.,and Abd, A. N. (2017). Plants extracts as green synthesis of zirconium oxide nanoparticles. J. Genet. Environ. Res. Conserv., 5(1), 6-23.
[33] Jiang X, Nie X, Gong Y et al (2020) A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogena- tion to methanol. J Catal 383:283–296. https://doi.org/10.1016/j. jcat.2020.01.014.
[34] K. Geethalakshmi, T. Prabhakaran, J. Hemalatha, Dielectric studies on Nano zirconium dioxide synthesised through coprecipitation process, Int. J. Mater. Metall. Eng. 4 (2012) 256–259.
[35] K. Li, H. Kou, J. Rao, C. Liu, C. Ning, Fabrication of enamel- like structure on polymer-infiltrated zirconia ceramics, Dent. Mater. 37 (2021), https://doi.org/10.1016/j.dental.2021.01.002 e245ee255.
[36] Kariminik, A. and E. S. Nazoori, (2018). In Vitro Evaluation of Antibacterial Properties of Zinc Oxide Nanoparticles on Pathogenic Prokaryotes. J Appl Biotechnol Rep. 5(4):162-165 p.
[37] Kumaresan M, Vijai Anand K, Govindaraju K et al (2018) Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nano- particles and their antibacterial activity against gram positive and gram negative bacteria. Microb Pathog 124:311–315. https://doi. org/10.1016/j.micpath.2018.08.060.
[38] Laird, E. D. (2016). Characterization of Antibiotic Resistance Profiles of Surface Water Bacteria in an Urbanizing Watershed. Msc. Thesis. Texas A and M Universit . 59 PP
[39] Lebeaux, D.; Chauhan, A.; Rendueles, O.; Beloin, C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2013, 2, 288–356. [CrossRef]
[40] Li Z, Ma J, Ruan J, Zhuang X (2019) Using positively charged mag- netic nanoparticles to capture bacteria at ultralow concen- tration. Nanoscale Res Lett 14:195. https://doi.org/10.1186/ s11671-019-3005-z.
[41] M. A. Guda, and E. A. R. A. Semysim, "Response of A Medicinal Plant Peganum Harmala to Iron Oxide Nanoparticles F3O4 (Nps)", Journal of Pharmaceutical Negative Results, vol. 13, vol. 13, special issue 08, pp. 289-308, 2022. https://doi.org/10.47750/pnr.2022.13.S08.123
[42] M. A. Guda, S. J. Hadi, K. K. Alasedi, F. J. Alduhaidahawi, L. Saheb, and M. F. Ali, "Antioxidant enzyme response of medical plant Persian Fenugreek (Trigonella foenum-graecum L.) to irrigation with microwaves treated water", international journal of research in pharmaceutical sciences, vol. 12, no. 1, pp. 442 – 445, 2021.
[43] M. M. Alabassi, M. A. Guda, and M. A. Muhammed, "The removal efficiency of Phyto-nano silver produced from Phragmites communis, Schanginia aegyptiaca and Portulaca oleracea in petroleum spots treatment", International Journal of Aquatic Biology, vol. 10, no. 2, pp. 181-186, 2022.
[44] M. O. Hammad, and M. A. Guda, "Effect of Phytosynthesis silver oxide nanoparticles on multidrug-resistant Klebsiella pneumonia isolated from children", Eur. Chem. Bull, vol. 12 no. 1, pp.1655-1669, 2023.
[45] M. Sathishkumar, K. Sneha, Y.-S. Yun, Green fabrication of zirconia nano- chains using novel Curcuma longa tuber extract, Mater. Lett. 98 (2013) 242– 245.
[46] Mallakpour, S., & Nezamzadeh Ezhieh, A.(2017). Polymer nanocomposites based on modified ZrO2 NPs and poly (vinyl alcohol)/poly (vinyl pyrrolidone) blend: optical, morphological, and thermal properties. Polymer-Plastics Technology and Engineering, 56(10), 1136-1145.
[47] Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4, 15. [CrossRef] [PubMed].
[48] Murray, P. R., Rosenthal, K. S., & Pfaller, M. A. (2020). Medical Microbiology E-Book. Elsevier Health Sciences.
[49] Nguyen DTC, Nguyen TT, Le HTN et al (2021d) The sunflower plant family for bioenergy, environmental remediation, nanotechnol- ogy, medicine, food and agriculture. Rev Environ Chem Lett 19:3701–3726. https://doi.org/10.1007/s10311-021-01266-z.
[50] O. A. R. Owied, M. A. M. Guda, H. I. Taher, and M. A. A. Abdulhussein, "Plants Anatomical Engineered by Nanomaterials", Revis Bionatura, vol. 8, no. 2, pp. 44-48, 2023. Volume 8 / Issue 2 / 44 / http://dx.doi.org/10.2931/RB/2023.08.02.44
[51] Olchowik, J., Aleksandrowicz-Trzci ́nska, M., Bzdyk, R. M., Studnicki M., Bederska-Błaszczyk, M., and Urban, A. (2017). The Effect of Silver and Copper Nanoparticles on the Condition of English Oak (Quercus robur L.) Seedlings in a Container Nursery Experiment. Forests. 8(310): 19 p.
[52] P. Bansal, G. Chaudhary, S.K. Mehta, Comparative study of catalytic activity of ZrO2 nanoparticles for sonocatalytic and photocatalytic degradation of cationic and anionic dyes, Chem. Eng. J. 280 (2015) 475–485.
[53] P. Joshi, S. Chakraborti, P. Chakrabarti, D. Haranath, V. Shanker, Z.A. Ansari, S.P. Singh, V. Gupta, Role of surface adsorbed anionic species in antibacterial Gupta, Role of surface adsorbed anionic species in antibacterial activity of ZnO quantum dots against Escherichia coli, J. Nanosci. Nanotechnol 9(11) (2009) 6427-6433.
[54] Rambabu K, Bharath G, Arangadi AF et al (2020) ZrO2 incorporated polysulfone anion exchange membranes for fuel cell applica- tions. Int J Hydrogen Energy 45:29668–29680. https://doi.org/ 10.1016/j.ijhydene.2020.08.175.
[55] Rana A, Yadav K, Jagadevan S (2020) A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mecha- nism, application and toxicity. J Clean Prod 272:122880. https:// doi.org/10.1016/j.jclepro.2020.122880.
[56] S. Gowri, R. Rajiv Gandhi, M. Sundararajan, Optical Structural, Antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol, J. Mater. Sci. Technol. 30 (2014) 782–790.
[57] S. Jangra, K. Stalin, N. Dilbaghi, S. Jai Tawale, Surinder P. Singh, R. Pasricha, Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes, J. Nanosci. Nanotechnol. 12 (2012) 7105–7112.
[58] S.S.N. Tharani, others, Green synthesis of zirconium dioxide (ZrO2) nanoparticles using acalypha indica leaf extract, Int. J. Eng. Appl. Sci. 3 (2016) 23e25, https://doi.org/api.semanti- cscholar.org/CorpusID:199071374.
[59] Shafey AME (2020) Green synthesis of metal and metal oxide nanoparti- cles from plant leaf extracts and their applications: A review. Green Process Synth 9:304–339. https://doi.org/10.1515/gps-2020-0031.
[60] Shahzadi, T., et al., Synthesis of eco-friendly cobalt nanoparticles using Celosia argentea plant extract and their efficacy studies as antioxidant, antibacterial, hemolytic and catalytical agent. Arabian Journal for Science and Engineering, 2019. 44 (7): p. 6435-6444.
[61] Shinde, H. M., Bhosale, T. T., Gavade, N L., Babar, S. B., Kamble, R. J., Shirke, B. S., & Garadkar, K. M. (2018). Biosynthesis of ZrO2 nanoparticles from Ficus benghalensis leaf extract for photocatalytic activity. Journal of Materials Science: Materials in Electronics, 29(16), 14055-14064.
[62] Shrimal P, Jadeja G, Patel S (2020) A review on novel methodologies for drug nanoparticle preparation: microfluidic approach. Chem Eng Res Des 153:728–756. https://doi.org/10.1016/j.cherd.2019.11.031.
[63] Singh, S. R., Krishnamurthy, N. B., & Mathew, B. B. (2014). In situ grafted nanostructured ZnO/carboxymethyl cellulose nanocomposites for efficient delivery of curcumin to cancer Article · January 2014. 2(4), 106–115.
[64] Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activ- ity. J Nanobiotechnology 15:65. https://doi.org/10.1186/ s12951-017-0308-z.
[65] Slavin, Y. N., et al., Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of nanobiotechnology, 2017. 15 (1): p. 1-20.
[66] Su, Y. H., & Lai, Y. S. (2014). Performance enhancement of natural pigments on a high light transmission ZrO2 nanoparticle layer in a water‐based dye‐ sensitized solar cell. International Journal of Energy Research, 38(4), 436-443.
[67] T. Eddaya, A. Boughdad, E. Sibile, P. Chaimbault, A. Zaid, A. Amechrouq, Biological activity of Sapindu smukorossi Gaerten aqueous extract against Thysanoplusia orchalcea, Ind. Crops Prod. 50 (2013) 325–332.
[68] V.G. Deshmane, Y.G. Adewuyi, Synthesis of thermally stable, high surface area, nano crystalline mesoporous tetragonal zirconium dioxide (ZrO2): effects of different process parameters, Micropor. Mesopor. Mater. 148 (2012) 88–100.
[69] Vaya, D. and B. Das, Green synthesis of cobalt oxide nanoparticles by a starch-assisted method. Nanoscience & Nanotechnology-Asia, 2019. 9 (3): p. 362-370.
[70] Vetchinkina, l., Loshchinina, E., Kupryashina, M., Burov, A., Pylaev, T. and Nikitina, V. (2018). Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. Peer journal. 6 (5237): 24 p.
[71] Wang M, Chen Z, Liu J et al (2021) Advanced high-temperature (RT- 1100°C) resistant adhesion technique for joining dissimilar ZrO2 ceramic and TC4 superalloys based on an inorganic/organic hybrid adhesive. Ceram Int. https://doi.org/10.1016/j.ceramint.2021.10. 083.
[72] Wang, A. Z.; Langer, R. & Farokhzad, O. C. (2012). Nanoparticle delivery of cancer drugs. Annu. Rev. Med.; 63:185–198.
[73] Xing X, Ma W, Zhao X et al (2018) Interaction between surface charge- modified gold nanoparticles and phospholipid membranes. Lang- muir 34:12583–12589. https://doi.org/10.1021/acs.langmuir.8b017 00.
[74] Y. Liu, L. He, A. Mustapha,H. Li, Z.Q. Hu, M. Lin, Anti-bacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7, J. Appl. Microbiol. 107 (2009) 1193e1201, https://doi.org/10.1111/j.1365-2672.2009.04303.x.
[75] Yadi M, Mostafavi E, Saleh B et al (2018) Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artif Cells, Nanomed Biotechnol 46:S336–S343. https://doi.org/ 10.1080/21691401.2018.1492931.
[76] Yuan, Y.; Wu, Y.; Suganthy, N.; Shanmugam, S.; Brindhadevi, K.; Sabour, A.; Alshiekheid, M.; Lan Chi, N.T.; Pugazhendhi, A.; Shanmuganathan, R. Biosynthesis of Zirconium Nanoparticles (ZrO2 NPs) by Phyllanthus Niruri Extract: Characterization and Its Photocatalytic Dye Degradation Activity. Food Chem. Toxicol. 2022, 168, 113340. [CrossRef].
[77] Zhang Y, Chen H-X, Duan L et al (2018) A comparison study of the structural and mechanical properties of cubic, tetragonal, mono- clinic, and three orthorhombic phases of ZrO2. J Alloys Compd 749:283–292. https://doi.org/10.1016/j.jallcom.2018.03.253.
[78] Zhang, H., Lu, H., Zhu, Y., Li, F., Duan, R., Zhang, M., & Wang, X. (2012). Preparations and characterizations of new mesoporous ZrO2 and Y2O3-stabilized ZrO2 spherical powders. Powder technology, 227, 9-16.
[79] Jalill, R. D. A., Jawad, M. M. H. M., & Abd, A. N. (2017). Plants extracts as green synthesis of zirconium oxide nanoparticles. J. Genet. Environ. Res. Conserv, 5(1), 6-23.
[80] Ahmed, T., Ren, H., Noman, M., Shahid, M., Liu, M., Ali, M. A., ... & Li, B. (2021). Green synthesis and characterization of zirconium oxide nanoparticles by using a native Enterobacter sp. and its antifungal activity against bayberry twig blight disease pathogen Pestalotiopsis versicolor. NanoImpact, 21, 100281.
[81] Goyal, P., Bhardwaj, A., Mehta, B. K., & Mehta, D. (2021). Research article green synthesis of zirconium oxide nanoparticles (ZrO2NPs) using Helianthus annuus seed and their antimicrobial effects. Journal of the Indian Chemical Society, 98(8), 100089.
[82] Siddique, M. H., Hayat, S., Muzammil, S., Ashraf, A., Khan, A. M., Ijaz, M. U., ... & Afzal, M. (2022). Ecofriendly phytosynthesized zirconium oxide nanoparticles as antibiofilm and quorum quenching agents against Acinetobacter baumannii. Drug Development and Industrial Pharmacy, 48(9), 502-509.
[83] Yadav, L. R., Shilpa, B. M., Suma, B. P., Venkatesh, R., & Nagaraju, G. (2021). Synergistic effect of photocatalytic, antibacterial and electrochemical activities on biosynthesized zirconium oxide nanoparticles. The European Physical Journal Plus, 136, 1-17.