Types and Applications of Soft Robot Arms and End-Effectors: A Review
Journal: Journal of Robotics Research (JRR), Volume:1, Issue:1, Pages: 40-52 Download pdf
Authors: Muna Mohammed, Alaa Al-Ibadi
Date: 10-2024
Abstract: Soft actuators have evolved as an inventive solution as a result of the ongoing advancements in technology and the growing demands for a safer and more efficient interaction between robots and humans and natural settings. These actuators are perfect for applications that call for careful handling of fragile objects and adaptation to irregular surfaces and forms since they can move more smoothly and flexibly than typical stiff actuators. The most recent advancements in the field of soft actuators are reviewed in this study. Shape memory alloys, magnetic actuators, electroactive polymers, and pneumatic muscle actuators (PMA) are only a few examples of the various types of soft actuators. Along with highlighting the integrated structure of these actuators, we also illustrate PMA configurations such as the contraction, extensor, and bending models. Additionally, the research focuses on soft-arm robotics or the design of robots with gripper-equipped arms. Each robot's design is explained in detail, including its purpose and the materials it was made of, as well as its size, weight, and working mechanism. The goal of the study is to provide better knowledge of the development of these technologies and their expanding use in industrial and research settings, with an emphasis on how accurate and flexible they are when interacting with their surroundings.
Keywords: soft robot, soft actuator, PMA, soft arm, soft gripper
References:
[1] O. Yasa et al., “An Overview of Soft Robotics,” Annu. Rev. Control. Robot. Auton. Syst., vol. 6, pp. 1–29, 2023, doi: 10.1146/annurev-control-062322-100607.
[2] O. Sokolov, A. Hošovský, and M. Trojanová, “Design, Modelling, and Control of Continuum Arms with Pneumatic Artificial Muscles: A Review,” Machines, vol. 11, no. 10, 2023, doi: 10.3390/machines11100936.
[3] D. Al-Shamkhani, A. Al-Ibadi, and M. E. Giannaccini, “Soft robot for ankle rehabilitation,” Proc. - Int. Conf. Dev. eSystems Eng. DeSE, pp. 486–491, 2023, doi: 10.1109/DeSE60595.2023.10468823.
[4] H. A. Mohsen, A. Al-Ibadi, and T. Y. Abdalla, “Different Types of Control Systems for the Contraction Pneumatic Muscle Actuator,” 2022 8th Int. Conf. Control. Decis. Inf. Technol. CoDIT 2022, pp. 956–961, 2022, doi: 10.1109/CoDIT55151.2022.9804047.
[5] J. D. Greer, T. K. Morimoto, A. M. Okamura, and E. W. Hawkes, “Series pneumatic artificial muscles (sPAMs) and application to a soft continuum robot,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 5503–5510, 2017, doi: 10.1109/ICRA.2017.7989648.
[6] N. El-Atab et al., “Soft Actuators for Soft Robotic Applications: A Review,” Adv. Intell. Syst., vol. 2, no. 10, 2020, doi: 10.1002/aisy.202000128.
[7] W. Al-Mayahi and H. Al-Fahaam, “A Review of Design and Modeling of Pneumatic Artificial Muscle,” Iraqi J. Electr. Electron. Eng., vol. 20, no. 1, pp. 122–136, 2024, doi: 10.37917/ijeee.20.1.13.
[8] F. Schmitt, O. Piccin, L. Barbé, and B. Bayle, “Soft robots manufacturing: A review,” Front. Robot. AI, vol. 5, no. JUN, 2018, doi: 10.3389/frobt.2018.00084.
[9] Q. Guan, J. Sun, Y. Liu, N. M. Wereley, and J. Leng, “Novel Bending and Helical Extensile/Contractile Pneumatic Artificial Muscles Inspired by Elephant Trunk,” Soft Robot., vol. 7, no. 5, pp. 597–614, 2020, doi: 10.1089/soro.2019.0079.
[10] A. Zolfagharian, A. Z. Kouzani, S. Y. Khoo, A. A. A. Moghadam, I. Gibson, and A. Kaynak, “Evolution of 3D printed soft actuators,” Sensors Actuators, A Phys., vol. 250, pp. 258–272, 2016, doi: 10.1016/j.sna.2016.09.028.
[11] R. K. Katzschmann et al., “Dynamically closed-loop controlled soft robotic arm using a reduced order finite element model with state observer,” RoboSoft 2019 - 2019 IEEE Int. Conf. Soft Robot., pp. 717–724, 2019, doi: 10.1109/ROBOSOFT.2019.8722804.
[12] C. Laschi, B. Mazzolai, V. Mattoli, M. Cianchetti, and P. Dario, “Design and Development of a Soft Actuator for a Robot Inspired by the Octopus Arm,” Springer Tracts Adv. Robot., vol. 54, pp. 25–33, 2009, doi: 10.1007/978-3-642-00196-3_4.
[13] A. Al-Ibadi, “The Design and Implementation of a Single-Actuator Soft Robot Arm for Lower Back Pain Reduction,” Iraqi J. Electr. Electron. Eng., vol. sceeer, no. 3d, pp. 25–29, 2020, doi: 10.37917/ijeee.sceeer.3rd.4.
[14] A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “Valuable experimental model of contraction pneumatic muscle actuator,” 2016 21st Int. Conf. Methods Model. Autom. Robot. MMAR 2016, pp. 744–749, 2016, doi: 10.1109/MMAR.2016.7575229.
[15] A. C. Review, “applied sciences Actuation Mechanisms and Applications for Soft Robots :,” 2023.
[16] H. Yang, M. Xu, W. Li, and S. Zhang, “Design and Implementation of a Soft Robotic Arm Driven by SMA Coils,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6108–6116, 2019, doi: 10.1109/TIE.2018.2872005.
[17] C. Liu, E. Dong, M. Xu, G. Alici, and J. Yang, “Locomotion analysis and optimization of actinomorphic robots with soft arms actuated by shape memory alloy wires,” Int. J. Adv. Robot. Syst., vol. 15, no. 4, pp. 1–14, 2018, doi: 10.1177/1729881418787943.
[18] M. Eshaghi, M. Ghasemi, and K. Khorshidi, “Design, manufacturing and applications of small-scale magnetic soft robots,” Extrem. Mech. Lett., vol. 44, p. 101268, 2021, doi: 10.1016/j.eml.2021.101268.
[19] H. Yaguchi, S. Sakuma, and T. Kato, “A New Type of Magnetic Actuator Capable of Wall-Climbing Movement Using Inertia Force,” J. Eng. (United Kingdom), vol. 2014, 2014, doi: 10.1155/2014/903178.
[20] Z. Liu, Y. D. Liu, Q. Shi, and Y. Liang, “Electroactive dielectric polymer gels as new-generation soft actuators: a review,” J. Mater. Sci., vol. 56, no. 27, pp. 14943–14963, 2021, doi: 10.1007/s10853-021-06260-y.
[21] Y. Bar-cohen, “Electroactive polymer (EAP) actuators — background review,” 2019.
[22] Ž. Šitum, P. Trslić, D. Trivić, V. Štahan, and H. Brezak, “Pneumatic muscle actuators within robotic and mechatronic systems,” pp. 175–188, 2015.
[23] W. Al-Mayahi and H. Al-Fahaam, “A Novel Variable Stiffness Compound Extensor-Pneumatic Artificial Muscle (CE-PAM): Design and Mathematical Model,” J. Robot. Control, vol. 4, no. 3, pp. 342–355, 2023, doi: 10.18196/jrc.v4i3.18225.
[24] H. A. Mohsen, A. Al-ibadi, and T. Y. Abdalla, “A Variable-Length , Variable-Stiffness Soft Endoscope ( VL-VS-SE ) for Upper Gastrointestinal Tract,” Journal of Robotics Research (JRR) , vol. 1, no. 1, pp. 1–6, 2024.
[25] A. F. Hassanin, D. Steve, and N. M. Samia, “A novel, soft, bending actuator for use in power assist and rehabilitation exoskeletons,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2017-Septe, no. 0, pp. 533–538, 2017, doi: 10.1109/IROS.2017.8202204.
[26] A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “Novel models for the extension pneumatic muscle actuator performances,” ICAC 2017 - 2017 23rd IEEE Int. Conf. Autom. Comput. Addressing Glob. Challenges through Autom. Comput., no. September, pp. 7–8, 2017, doi: 10.23919/IConAC.2017.8081973.
[27] H. Al-Fahaam, S. Davis, and S. Nefti-Meziani, “Wrist rehabilitation exoskeleton robot based on pneumatic soft actuators,” 2016 Int. Conf. Students Appl. Eng. ICSAE 2016, pp. 491–496, 2017, doi: 10.1109/ICSAE.2016.7810241.
[28] A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “The design, kinematics and torque analysis of the self-bending soft contraction actuator,” Actuators, vol. 9, no. 2, 2020, doi: 10.3390/ACT9020033.
[29] H. Al-Fahaam, S. Davis, and S. Nefti-Meziani, “The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons,” Rob. Auton. Syst., vol. 99, pp. 63–74, 2018, doi: 10.1016/j.robot.2017.10.010.
[30] X. Li, W. Zhang, and L. Zhao, “Optimal Structure and Size of Multi-segment Soft Robotic Arms with Finite Element Method,” vol. 04023, 2021.
[31] Z. Chen, X. Liang, T. Wu, T. Yin, Y. Xiang, and S. Qu, “Pneumatically Actuated Soft Robotic Arm for Adaptable Grasping,” Acta Mech. Solida Sin., vol. 31, no. 5, pp. 608–622, 2018, doi: 10.1007/s10338-018-0052-4.
[32] H. LI, Y. XU, C. ZHANG, and H. YANG, “Kinematic modeling and control of a novel pneumatic soft robotic arm,” Chinese J. Aeronaut., vol. 35, no. 7, pp. 310–319, 2022, doi: 10.1016/j.cja.2021.07.015.
[33] A. Al-Ibadi, S. Nefti-Meziani, S. Davis, and T. Theodoridis, “Design of two segments continuum robot arm based on Pneumatic Muscle Actuator (PMA),” ICAC 2018 - 2018 24th IEEE Int. Conf. Autom. Comput. Improv. Product. through Autom. Comput., no. September, pp. 1–6, 2018, doi: 10.23919/IConAC.2018.8749087.
[34] B. Mazzolai et al., “Octopus‐Inspired Soft Arm with Suction Cups for Enhanced Grasping Tasks in Confined Environments,” Adv. Intell. Syst., vol. 1, no. 6, 2019, doi: 10.1002/aisy.201900041.
[35] C. Alessi, D. Bianchi, G. Stano, M. Cianchetti, and E. Falotico, “Pushing with Soft Robotic Arms via Deep Reinforcement Learning,” Adv. Intell. Syst., 2024, doi: 10.1002/aisy.202300899.
[36] W. Encoders, “A Soft Master-Slave Robot Mimicking Octopus Arm,” 2019.
[37] S. Ku, B. H. Song, T. Park, Y. Lee, and Y. L. Park, “Soft modularized robotic arm for safe human–robot interaction based on visual and proprioceptive feedback,” Int. J. Rob. Res., vol. 43, no. 8, pp. 1128–1150, 2024, doi: 10.1177/02783649241227249.
[38] L. Hernandez-Barraza, A. Kalil-Khan, and R. C. H. Yeow, “A bioinspired modular soft robotic arm,” Eng. Res. Express, vol. 5, no. 1, 2023, doi: 10.1088/2631-8695/acb5f0.
[39] G. Olson, J. A. Adams, and Y. Mengüç, “Redundancy and overactuation in cephalopod-inspired soft robot arms,” Bioinspiration and Biomimetics, vol. 17, no. 3, 2022, doi: 10.1088/1748-3190/ac5412.
[40] A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “Active Soft End Effectors for Efficient Grasping and Safe Handling,” IEEE Access, vol. 6, pp. 23591–23601, 2018, doi: 10.1109/ACCESS.2018.2829351.
[41] M. Li, A. Pal, A. Aghakhani, A. Pena-francesch, and M. Sitti, “Europe PMC Funders Group Soft actuators for real-world applications,” pp. 235–249, 2022, doi: 10.1038/s41578-021-00389-7.Soft.
[42] D. D. K. Arachchige, Y. Chen, I. D. Walker, and I. S. Godage, “A Novel Variable Stiffness Soft Robotic Gripper,” IEEE Int. Conf. Autom. Sci. Eng., vol. 2021-Augus, pp. 2222–2227, 2021, doi: 10.1109/CASE49439.2021.9551616.
[43] W. Crooks, G. Vukasin, M. O’Sullivan, W. Messner, and C. Rogers, “Fin Ray® effect inspired soft robotic gripper: From the robosoft grand challenge toward optimization,” Front. Robot. AI, vol. 3, no. NOV, pp. 1–9, 2016, doi: 10.3389/frobt.2016.00070.
[44] Y. Hao et al., “Modeling and experiments of a soft robotic gripper in amphibious environments,” Int. J. Adv. Robot. Syst., vol. 14, no. 3, pp. 1–12, 2017, doi: 10.1177/1729881417707148.
[45] B. Shih et al., “Custom soft robotic gripper sensor skins for haptic object visualization,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2017-Septe, pp. 494–501, 2017, doi: 10.1109/IROS.2017.8202199.
[46] Y. Hao et al., “A Soft Bionic Gripper with Variable Effective Length,” J. Bionic Eng., vol. 15, no. 2, pp. 220–235, 2018, doi: 10.1007/s42235-018-0017-9.
[47] T. Nishimura, K. Mizushima, Y. Suzuki, T. Tsuji, and T. Watanabe, “Variable-Grasping-Mode Underactuated Soft Gripper with Environmental Contact-Based Operation,” IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 1164–1171, 2017, doi: 10.1109/LRA.2017.2662086.
[48] Z. Gong et al., “An opposite-bending-and-extension soft robotic manipulator for delicate grasping in shallow water,” Front. Robot. AI, vol. 6, no. APR, pp. 1–10, 2019, doi: 10.3389/frobt.2019.00026.
[49] F. Zhang et al., “Research on Flexible End-Effectors with Humanoid Grasp Function for Small Spherical Fruit Picking,” Agric., vol. 13, no. 1, 2023, doi: 10.3390/agriculture13010123.