Journal: Journal of Physico-Chemical Material (JPCM), Volume:1, Issue:1, Pages: 26-29 Download pdf
Authors: Tabarak Haitham Abd Alameer and Afyaa Sabah Nasir
Abstract: The outcomes of mild and warmth strain on white rats (Rattus norvegicus) are examined on this review. It demonstrates how those environmental variables reason great alterations in physiology as well as harm to DNA. Elevated frame temperature and quicker heart and breathing quotes are the results of heat stress. However, DNA harm from light pressure from UV radiation results inside the introduction of thymine dimers, that could induce mutations. The assessment additionally demonstrates how these stressors paintings collectively to exacerbate oxidative pressure and cellular harm, which places greater physiological load at the rats. The take a look at sheds mild on how heat shock proteins and DNA repair structures assisted the rats in adjusting to these difficult instances, offering essential new understandings into the environmental consequences at massive.
Keywords: Heat Stress, DNA Damage, Physiological Responses, Oxidative Stress, Heat Shock Proteins, Environmental Impact
References:
1. Allen, M. R., Dube, O. P., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S., ... & Zickfeld, K. (2018). Global Warming of 1.5°C. IPCC Special Report.
2. Abugre, R. N. et al. (2024) ‘Ab Initio Molecular Dynamic Simulation of the Ionic Transport Mechanisms for LiCoO2 and Ni Doped LiCoO2 as Cathodes in Lithium Batteries’, Journal of Physico-Chemical Material (JPCM), 1(1), pp. 1–6.
3. Kathum, H., Alsultan, A. A. and Guda, M. A. (2024) ‘Green Synthesis of Zirconium Oxide Nanoparticles and their Effect on Inhibition Growth of Bacteria’, Journal of Physico-Chemical Material (JPCM), 1(1), pp. 19–25.
4. Both, C., Bouwhuis, S., Lessells, C. M., & Visser, M. E. (2006). Climate change and population declines in a long-distance migratory bird. Proceedings of the National Academy of Sciences, 103(8), 2639-2643.
5. Derocher, A. E., Lunn, N. J., & Stirling, I. (2004). Polar bears in a warming climate. Integrative and Comparative Biology, 44(2), 163-176.
6. Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., ... & Tempio, G. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO).
7. Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., ... & Wilson, S. K. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543(7645), 373-377.
8. Ims, R. A., & Fuglei, E. (2005). Trophic interaction cycles in tundra ecosystems and the impact of climate change. Bioscience, 55(4), 311-322.
9. IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
10. Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616-620.
11. Jepsen, J. U., Hagen, S. B., Ims, R. A., & Yoccoz, N. G. (2013). Climate change and outbreaks of the geometrid moths in subarctic birch forest: evidence of a recent outbreak range expansion. Journal of Animal Ecology, 82(1), 92-101.
12. Lovejoy, T. E., & Nobre, C. (2018). Amazon tipping point. Science Advances, 4(2), eaat2340.
13. Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., ... & Warren, M. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399(6736), 579-583.
14. Pauli, H., Gottfried, M., Reiter, K., Klettner, C., & Grabherr, G. (2012). Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology, 18(2), 281-300.
15. Tattersall, G. J., Sinclair, B. J., Withers, P. C., Fields, P. A., Seebacher, F., Cooper, C. E., & Maloney, S. K. (2012). Coping with thermal challenges: physiological adaptations to environmental temperatures. Comprehensive Physiology, 2(4), 2151-2202.
16. Ahmad, P., & Prasad, M. N. V. (2012). Climate Change and Plant Abiotic Stress Tolerance. Wiley-Blackwell.
17. IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability
18. Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959–1968. DOI: 10.1093
19. Gerber, P. J., et al. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO).
20. Lindquist, S., & Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics, 22(1), 631-677.
21. IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability.
22. Allen, M. R., et al. (2018). Global Warming of 1.5°C. IPCC Special Report.
23. Nasir, S. A., Jaber, S. H., Guda, M. A., & Almayahi, B. A. (2020). Oxidative Stress in the Male Rats Treated with Metronidazole. Prensa Med Argent, 106, 2180.
24. Owied, O.A.R.; Guda, M.A.M.; Taher, H.I.; Abdulhussein, M.A.A . Plants Anatomical Engineered By Nanomaterials. Revis Bionatura 2023;8 (2) 44. http://dx.doi.org/10.21931/RB/2023.08.02.44
25. Rahi, A.Y.; Guda, M.A.; Abdulbary, M.; Khashan,K.T. Effect Biosynthesis of fenugreek leaves nanomaterial on some plants germination using saline water. Revis Bionatura 2023;8 (2) 60. http://dx.doi.org/10.21931/RB/2023.08.02.60.